期望的线性基础
$Proof1$:
$$
\mathbb{E}\left[ X \right] =\sum_{x\ge 0}{x\cdot Pr\left( X=x \right) =\sum_{x\ge 0}{\sum_{k=0}^{x-1}{Pr\left( X=x \right)}=\sum_{k\ge 0}{Pr\left( X>k \right)}}}
$$
补充
令$I(A) \in \left\{ 0,1 \right\} $是事件$A$的指标随机变量,易得:
$$
\bigstar I\left( A^c \right) =1-I\left( A \right)
$$
$$
\clubsuit I\left( A\cap B \right) =I\left( A \right) \cdot I\left( B \right)
$$
对于事件序列$A_1,A_2,…,A_n$有:
$$
I\left( \bigcup_{i=1}^n{A_i} \right) \xlongequal{\bigstar}1-I\left( \left( \bigcup_{i=1}^n{A_i} \right) ^c \right) =1-I\left( \bigcap_{i=1}^n{A_{i}^{c}} \right)
$$
$$
\xlongequal{\clubsuit}1-\prod_{i=1}^n{I\left( A_{i}^{c} \right)}\xlongequal{\bigstar}1-\prod_{i=1}^n{\left( 1-I\left( A_i \right) \right)}
$$
$$
=1-\sum_{S\subseteq \left\{ 1,2,…n \right\}}{\left( -1 \right) ^{\left| S \right|}\cdot \prod_{I\in S}{I\left( A_i \right)}}
$$
$$
\xlongequal{\clubsuit}\sum_{\oslash \ne S\subseteq \left\{ 1,2,…n \right\}}{\left( -1 \right) ^{\left| S \right|-1}\cdot I\left( \bigcap_{i\in S}{A_i} \right)}
$$
根据期望的线性法则有:
$$
\mathbb{E}\left( I\left( \bigcup_{i=1}^n{A_i} \right) \right) =Pr\left( \bigcup_{i=1}^n{A_i} \right) =\xlongequal{\clubsuit}\sum_{\oslash \ne S\subseteq \left\{ 1,2,…n \right\}}{\left( -1 \right) ^{\left| S \right|-1}\cdot Pr\left( \bigcap_{i\in S}{A_i} \right)}
$$